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A random cluster measure on Zd that is not translationally invariant is con-
structed for d \ 3, the critical density pc, and sufficiently large q. The resulting
measure is proven to be a Gibbs state satisfying cluster model DLR- equations.
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1. INTRODUCTION

In this paper we study the existence of Gibbs measures for a random
cluster model on Zd, d \ 3, that are not translation-invariant. In particular,
they are not a linear combination of mo and mv, the measures constructed as
limits with fully occupied (wired) and vacant (empty) boundary conditions,
respectively. A translation noninvariant measure is obtained, for the ran-
dom cluster model at the critical occupation density pc and with sufficiently
large q, as a limit of the measures in finite boxes with Dobrushin type (1)

boundary conditions: vacant in a halfspace and occupied in the comple-
mentary one. In the language of the corresponding Potts model, with an
integer q, this corresponds to the coexistence of the ordered and disordered
phases. After having constructed the limiting measure, we show some of its
properties and prove that it is indeed a Gibbs state.

While the existence of such translation noninvariant states has been
more or less explicitly stated (especially in the context of the Potts model)
and the idea of the limiting construction was sketched, (2–4) the details of
the proof have never been presented. Having also in mind that it was



conjectured that for a general random cluster model a translation nonin-
variant Gibbs measure does not exist (5) and that the subtle problem of
proving that the limiting measure is, indeed, a Gibbs state in the sense of
satisfying the DLR equations for random cluster measures (the relevant
definitions will be recalled below), we considered it useful to present a
detailed proof of these facts.

2. SETTINGS AND RESULTS

We begin with some notation. For any subset L … Zd we introduce
B0(L) as the set of all bonds b=Ox, yP of nearest neighbours with both
endpoints in L, the set B(L) as the set of all bonds with at least one end-
point in L and “B(L) as B(L)0B0(L). For any B … B(Zd) we define the set
V(B) as the set of sites which belong to at least one bond in B. The rele-
vant sample space for random cluster model is the set W={0, 1}B(Z

d) of
configurations g={gb}, b ¥ B(Zd), with gb ¥ {0, 1} . For any configuration
g we introduce the set of all occupied bonds B(g)={b ¥ B(Zd) : g(b)=1}
and the corresponding graph (Zd, B(g)) with the vertex set Zd and the edge
set B(g). We write gB for {gb}b ¥ B and gB p ḡB

c for the configuration that
equals to gB on B and to ḡB

c on Bc.
We define the random cluster measure on a finite set B … B(Zd) as

follows. Let 0 [ p [ 1, q > 0, and let ḡB
c be a fixed configuration on Bc.

For any configuration g, let kB(g) be the number of components C(g)
(including isolated vertices) of the graph (Zd, B(g)) such that the vertex set
V(C(g)) intersects V(B). The random cluster measure on B with boundary
condition ḡB

c, and with fixed parameters p and q, is given by

m ḡ
B(g)=

1
Z ḡ

B

p |B(g) 5 B|(1 − p) |B0B(g)| qkB(gB p ḡBc) (2.1)

if g=ḡ on Bc and m ḡ
B(g)=0 otherwise. Here, ZB(ḡ) is the partition

function,

Z ḡ
B=C

gB

p |B(g) 5 B|(1 − p) |B0B(g)| qkB(gB p ḡBc), (2.2)

with the sum running over all configurations g equal to ḡ on Bc. To avoid
heavy notation, we do not explicitly mark the dependence on the param-
eters p and q.

As usual, there are two natural candidates for infinite volume random
cluster measure. One can either use Dobrushin–Lanford–Ruelle (DLR)
equations or take a weak limit over finite boxes.
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Definition 2.1. A probability measure m on {0, 1}B(Z
d) is called the

Gibbs random cluster measure if

m(f )=F m(dg) mg
B(f ) (2.3)

for any finite B … B(Zd) and any cylinder function f with support in B.

Definition 2.2. A probability measure m on {0, 1}B(Z
d) is called a

limit random cluster measure if there exists an increasing sequence
B1 … B2 … · · · of bond sets such that 1.

n=1 Bn=B(Zd) and a configuration
g ¥ W such that

lim
n Q .

mg
Bn

(f )=m(f ) (2.4)

for any cylinder function f.

Let us now sum up some known facts about random cluster model.
For more detailed discussion see, for example, refs. 4, 6, and 7. Let go (gv)
be the fully occupied (vacant) configuration defined by go

b=1 (gv
b=0) for

all b ¥ B(Zd). It is known that the measures

mo( · )= lim
B Q B(Z

d)
mg

o

B ( · ) and (2.5)

mv( · )= lim
B Q B(Z

d)
mg

v

B ( · ) (2.6)

exist and are Gibbs random cluster measures. In addition, for any
p ¥ [0, 1], q \ 1, the inequality mv [FKG m [FKG mo holds for any Gibbs
random cluster measure m. Further, for q large enough, there exists
pc ¥ (0, 1) such that the measures mo and mv differ for p=pc. Moreover, for
all p ] pc the measures mo and mv coincide and thus there is only one Gibbs
measure.

To state our main theorem we need the following notation. Let t ¥ W

be the configuration defined as follows: tb=1 for all bonds b whose both
end-vertices have a nonnegative dth coordinate and tb=0 otherwise.
Further, let LL, M be the box ([ − L, L]d − 1 × [ − M, M]) 5 Zd and BL, M be
the set B0(LL, M) 2 (“B(LL, M) 5 B(t)). We will write LL for LL, . and BL

for BL, ..

Theorem 2.3. Let d \ 3. There exists q0=q0(d) such that if q \ q0

and p=pc, then:
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(i) The limit measure

mt( · )= lim
L Q .

lim
M Q .

mt

BL, M
( · ) (2.7)

exists.

(ii) There is, mt-a.s., exactly one infinite cluster.

(iii) The measure mt is not translation invariant.

(iv) The measure mt is a Gibbs random cluster measure.

The outline of the proof follows. We first rewrite the random cluster
partition function in a finite box using a contour representation. Secondly,
we use this representation to describe the the extremal Gibbs measures mo

and mv. Next, we apply the methods from (8) (that are in itself an extension
of the Dobrushin proof of existence of a translation noninvariant Gibbs
state for the Ising model) to construct the limit measure mt. We will see that
there is a rigid interface separating an infinite occupied cluster in the upper
half space from the region with only finite clusters in the lower half-space.
Then, we use the uniqueness of the infinite cluster to prove that limit
measure mt is a Gibbs random cluster measure.

3. INTRODUCTION OF CONTOURS

For an arbitrary configuration g ¥ W, we first consider the set
B(g) … Rd obtained as the union of all bonds from B(g) viewed as unit
segments in Rd. Further, we extend it and define the set F(g) as the union
of B(g) with all unit squares whose all four edges are occupied as well as
with all unit cubes whose all twelve edges are in B(g), etc. Now, taking the
1/4-neighbourhood U1/4(F(g)) of F(g) (in maximal norm), we define the
contours as finite components of the boundary of U1/4(F(g)).

Let us note, that for any contour c there exists one infinite component
of Rd 0c denoted Ext c and let Int c=Rd 0(Ext c 2 c). For any contour c

there exists a unique configuration g, such that c is the only contour of g.
The contour c is called o-contour, if all bonds in B0(Ext c 5 Zd) are
occupied in this configuration, otherwise c is called v-contour. We use Ko

(resp. Kv) to denote the set of all o-contours (resp. v-contours), and set
K=Ko 2 Kv. A collection “ … K of contours is compatible, if there exists
g ¥ W, such that “ matches with the boundary of U1/4(F(g)). We use the
symbol g(“) to denote this configuration. Let D denote the set of all com-
patible collections of contours. We say that a contour c ¥ “ is an external
contour of a compatible collection “ if c ¼ Int c̄ for all c̄ ¥ “. We use De to
denote the set of all compatible collections with all contours external, DB, a,
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a=o, v, to denote the set of all compatible families “ of contours such that
the corresponding configuration g(“) coincides with ga outside the set B,
and we set Da=1B … B(Z

d) DB, a. Further, we use ||c|| to denote the number of
intersections of c with bonds from B(Zd) and r(c) to denote the weight of
the contour,

r(c)=˛q−||c||/2d if c is o-contour,
qq−||c||/2d if c is v-contour.

(3.1)

Finally, we introduce the energies of occupied and vacant bonds eo=
−log p and ev=−log(1 − p) − (log q)/d.

Lemma 3.1. For any box L we have:

(a) Zgv
B0(L)=q

|“B(L)|
2d C

“ ¥ DB0(L), v

e−eo |B(g(“))|e−ev |B0(L)0B(g(“))| D
c ¥ “

r(c), (3.2)

(b) Zg
o

B(L)=q C
“ ¥ DB(L), o

e−eo |B(g(“)) 5 B(L)|e−ev |B(L)0B(g(“))| D
c ¥ “

r(c). (3.3)

Proof. We say that a site x ¥ Zd is g-isolated if all bonds incident to
x are vacant. Let EL(g) be the number of g-isolated bonds in L. For any g

we define the sets

“ig={b ¥ B(Zd)0B(g) : |V(b) 5 V(B(g))|=i}, i=1, 2. (3.4)

The following equalities are obvious,

EL(g)=|L| − |L 5 V(B(g))|, (3.5)

2d |L|=2 |B0(L)|+|“B(L)|. (3.6)

Now, to prove (a) let g be any configuration identical to gv outside
B0(L). Then we have:

2d |L 5 V(B(g))|=2 |B(g)|+2 |“2g|+|“1g|. (3.7)

In terms of the collection “(g) of contours of g, we have

2 |“2g|+|“1g|= C
c ¥ “(g)

||c|| (3.8)
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and

kB0(L)(g)=|“(g) 5 Kv |+EL(g), (3.9)

with |“(g) 5 Kv | denoting the number of v-contours in “(g). Combining
(3.5)–(3.9) with definition of partition function we get (a).

To prove (b), we proceed similarly. Let g be any configuration identi-
cal to go outside B(L). Then

2d |L 5 V(B(g))|=2 |B(g) 5 B0(L)|+|B(g) 5 “B(L)|

+2 |“2g 5 B0(L)|+|“2g 5 “B(L)|+|“1g 5 B0(L)|.
(3.10)

In terms of the contour representation,

C
c ¥ “(g)

||c|| − |“B(L)0B(g)|

=2 |“2g 5 B0(L)|+|“2g 5 “B(L)|+|“1g 5 B0(L)| (3.11)

and

kB(L)(g)=1+|“(g) 5 Kv |+EL(g). (3.12)

After a similar calculation as for (a) we get (b). L

For any contour c we define BInt c as the set of all bonds having their
centres in Int c and introduce the ‘‘partition sums’’ Zv(Int c) and Zo(Int c):

Zv(Int c)= C
“ ¥ Dv

“ … Int c

e−eo |B(g(“)) 5 BInt c |e−ev |BInt c 0B(g(“))| D
c̄ ¥ “

r(c̄), (3.13)

Zo(Int c)= C
“ ¥ Do

“ … Int c

e−eo |B(g(“)) 5 BInt c |e−ev |BInt c 0B(g(“))| D
c̄ ¥ “

r(c̄). (3.14)

Here “ … Int c is a shorthand for c̄ … Int c for each c̄ ¥ “. Notice that since
Int c … Rd is open, a contour c̄ … Int c does not intersect the boundary
of Int c. Further, we use this notation to define contour functionals
Fo: Ko Q R and Fv: Kv Q R by

Fv(c)=r(c)
Zv(Int c)
Zo(Int c)

, (3.15)

Fo(c)=r(c)
Zo(Int c)
Zv(Int c)

. (3.16)
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Their importance lies in the fact that they allow to use the powerful theory
of polymer models.

This is done in two steps. First, it can be shown that, for p=pc and
q sufficiently large, these functionals satisfy the bounds

|Fa(c)| [ e−y ||c|| (3.17)

for each c ¥ Ka, a=v, o, with y= 1
2d log q − y0 with a fixed y0=y0(d). This

step needs an employment of the full Pirogov–Sinai theory (9) and we refer
to the expositions (10) where this result is presented exactly in the current
setting. Actually, the main claim of the Pirogov–Sinai theory in the present
context is that there exists the value pc such that (3.17) is valid for Fv

whenever p [ pc and for Fo whenever p \ pc. This value pc turns out (7) to
be identical to the percolation threshold.

Once the bound (3.17) is established, the functionals Fo and Fv can be
used to control the partition functions (3.2) and (3.3) in terms of polymer
models with convergent cluster expansions.3 The main claims of the theory

3 The term cluster is used in two different meanings. First, we deal with random cluster
models, while here we employ cluster expansions for their control. Since both notions are
well established and used in the literature, we will use them simultaneously—which one we
have in mind will always be clear from the context.

of polymer models are, for the reader convenience, summarised in Appen-
dix B. In particular, whenever L … Ka is a finite set of contours, we define

Z(L, Fa)= C
“ … L

D
c ¥ “

Fa(c), (3.18)

where the sum is over sets “ of mutually compatible contours. As stated
in Theorem 2.2, assuming that Fa satisfies (3.17), there exists a map
FT

a assigning a complex number FT
a (C) to each finite C … Ka,

FT
a : exp(Ka) W C, such that

log Z(L, Fa)= C
C … L

FT
a (C) (3.19)

for any finite L … Ka. In addition, there exists w0=w0(d) such that for for
every x ¥ Rd, the estimate

C
C … Ka

1c ¥ C c ¦ x

|FT
a (C)| ew ||C|| [ 1 (3.20)
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is satisfied with w= 1
2d log q − w0. We use ||C|| to denote the overall length

of the cluster C, ||C||=; c ¥ C ||c||.
Using now Kv(L) and Ko(L) to denote the sets of v-contour and

o-contours within 1-neighbourhood of L, we rewrite the partition functions
(3.2) and (3.3) in terms of partition functions (3.18) of corresponding
polymer models.

Lemma 3.2. Let L be an arbitrary box in Zd. Then

(a) Zg
v

B0(L)=q |“B(L)|/2d exp(−ev |B0(L)|) Z(Kv(L), Fv), (3.21)

(b) Zg
o

B(L)=q exp(−eo |B(L)|) Z(Ko(L), Fo). (3.22)

Proof. We prove here (a), the claim (b) can be proven in similar
way. For any “ ¥ DB0(L), v we use G(“) to denote the set of external con-
tours of “ and Ext “ to denote 4c ¥ G(“) Ext c. Let us write BExt “(L)
for B0(L)0(1c ¥ “ BInt c). For any c ¥ G(“) we define the set “̄(c)={c̄ ¥ “ :
c̄ … Int c}.

Since all external contours of “ are v-contours we can rewrite (3.2) in
the following way:

Zg
v

B0(L)=q |“B(L)|/2d C
“ ¥ DB0(L), v

exp[−ev |BExt “(L)|]

× D
c ¥ G(“)

exp[−eo |BInt c 5 B(g(“̄(c)))|−ev |BInt c 0B(g(“̄(c)))|] D
c ¥ “

r(c)

=q |“B(L)|/2d C
G

exp[−ev |BExt “(L)|] D
c ¥ G

r(c) Zv(Int c)
Zo(Int c)
Zv(Int c)

, (3.23)

where the sum runs over all collections G of mutually external contours
from Kv(L).

We can use (3.16) and iterate this step by expanding Zv(Int c). The
number of iterations will be necessarily finite, since L is a finite box. After
all iterations we get (a). L

4. UNIQUENESS OF THE LIMIT RANDOM CLUSTER

MEASURE IN A FINITE BASE CYLINDER

The proposition proved here is used only in the proof of the existence
of limit measure mt. However, it can be of its own interest. Let L be any
finite base cylinder in Zd, i.e., the L=Q × Z for some finite set Q … Zd − 1
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and let B be such that B0(L) … B … B(L). We use the symbol Bn
m for the

subset of B within the slab Rd − 1 × [m, n].
The configuration g is called B-good boundary condition if for every

noninteger h ¥ R there are no two different components of B(g) 5 Bc

viewed as a graph, such that both contain vertices from V(B) above as well
as bellow the height h.

Proposition 4.1. Let g be a B-good boundary condition, 0 < p < 1
and q \ 1. Then the limit random cluster measure mg

B=limn Q . mg
B

n
−n

exists
and is independent of the values of g on B.

Proof. Let us write g (a) as the configuration ga
B p gB

c, a=o, v. It is
not difficult to prove using the FKG inequality (6, 7) that mg

(v)

BŒ [FKG mg
(v)

Bœ ,
whenever BŒ … Bœ are finite subsets of B. Indeed, one obtains mg

(v)

BŒ from
mg

(v)

Bœ by the conditioning on the decreasing event gb=0 for all b ¥ Bœ0BŒ.
In the same way we get mg

(o)

BŒ \ FKG mg
(o)

Bœ . Using these inequalities it is easy to
prove the existence of the limits mg

(v)

B and mg
(o)

B .
Due to the fact that for every bond b=Ox, yP and every g one has

mg
b (gb=1)=˛p if x is connected to y in B(g)0b,

p
p+(1 − q) p

otherwise,
(4.1)

and using the Holley theorem (see ref. 11, Theorem 4.8) we get

mg
(v)

BŒ [
FKG

mg
BŒ [

FKG
mg

(o)

BŒ . (4.2)

Hence, to prove the existence of mg
B and its independence of gB it is suffi-

cient to show that mg
(o)

B =mg
(v)

B .
Consider now the event Dm, which is realised if there is no occupied

vertical bond in B between the planes xd=m and xd=m+1, Dm, n=
1n − 1

i=m Di. Take an increasing function f depending only on the bonds
from Bm

−m. Then for n > m one gets

m
g

(o)

B
n
−n

(f )=m
g

(o)

B
n
−n

(f | Dc
−n, −m 2 Dc

n, m) m
g

(o)

B
n
−n

(Dc
−n, −m 2 Dc

m, n)

+ C
n − 1

i=m
C

m − 1

j=−n
m

g
(o)

B
n
−n

(f | Ei, j) m
g

(o)

B
n
−n

(Ei, j),
(4.3)

where Ei, j=Di 5 Dj 5 Dc
−n, −j 5 Dc

i+1, n.
First we estimate the probability of event Dm, n. We use the fact, that

the random cluster measure mBŒ with parameters p and q > 1 is FKG-dom-
inated by Bernoulli percolation measure mg

BŒ with parameter P > p, P ] 1
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(see ref. 6, Theorem 2.2). Due to the fact that Dm, n is a decreasing event,
one can write

m
g

(o)

B
n
−n

(Dm, n) \ mg
B

n
−n

(Dm, n)=1 − [1 − (1 − P) |Q|]n − m. (4.4)

As a result we get m
g

(o)

B
n
−n

(Dc
−n, −m 2 Dc

m, n)=e(n) Q 0 as n Q .. Since the
boundary condition g is B-good, we have m

g
(o)

B
n
−n

(f | Ei, j)=m
g

(v)

B
i
j+1

(f ) [

m
g

(v)

B
n
−n

(f ). Substituting these two facts into (4.3) one gets

m
g

(o)

B
n
−n

(f )=e(n) ||f||+(1 − e(n)) m
g

(v)

B
n
−n

(f ) [ e(n) ||f||+m
g

(v)

B
n
−n

(f ). (4.5)

Taking the limit n Q . in the last equation we get mg
(v)

B \ mg
(o)

B . This
together with (4.2) completes the proof. L

5. INTERFACE PARTITION FUNCTION

The aim of this section is to rewrite the partition function Zt in terms
of interfaces. Here we close follow the similar step in refs. 8 and 12 taking
into account, however, the particularities or contours for random cluster
model. Namely, considering the finite set BL, M (see Theorem 2.3), let g be a
configuration equal to t outside BL, M. It is easy to see, that the boundary
of U1/4(F(g)) has one infinite component I(g), called the interface of g.
We use I0 to denote the interface of t. For any such g the interface I(g)
differs from I0 only in the 1-neighbourhood of the set LL, M. More precisely,
I(g)0I0 … U1(LL, M). Let us use IL, M to denote the set of all interfaces
with this property. For any interface I ¥ IL, M we define the length
||I||L, M=|I 5 B(LL, M)| and the weight rL, M(I)=q−||I||L, M/2d. The interface I
divides Rd into two open components, the upper one, Rd

o (I), and the lower
one, Rd

v (I). For any L … Zd, we define Bo(L, I) as the set of all bonds from
B(L) with centres within Rd

o (I). Similarly, we define Bv(L, I), Bo
0(L, I),

Bv
0(L, I), “Bo(L, I), and “Bv(L, I). Notice that, say, B0(L 5 Rd

o (I)) ‡

Bo
0(L, I), “B(L 5 Rd

o (I)) ‡ “Bo(L, I), and “B(L 5 Rd
o (I))0“Bo(L, I) is the

set of bonds from B(L) intersecting the interface I.
Except the interface, all other components of the boundary of the set

U1/4(F(g)) are contours. We use DL, M(I) for the set of collections of all
contours of configurations that equal to t outside BL, M and contain the
interface I. It is not difficult to see that a configuration g that equals to t

outside BL, M is determined by its interface I and a contour configuration “

from DL, M(I). We write g(“, I) for this configuration.
It will be useful to use the shorthand x ¥ C whenever x ¥ 1c ¥ C c.

Similarly, we use C 5 I for the set of points (1c ¥ C c) 5 I and C 5 B, with

82 Černý and Kotecký



B … B(Zd), to denote the set of all intersections of all contours c from C
with bonds from B. An important consequence of the convergence (3.20) is
the explicit expression for the limits

lim
|L| Q .

log Z(Ka(L), Fa)
|B(L)|

=2 C
C … Ka

C ¦ x

FT
a (C)

|C 5 B(Zd)|
— p(Fa), (5.1)

where x is an arbitrary point, that can be written as x=1
4 y+3

4 z with
Oy, zP ¥ B(Zd). Moreover, a standard consequence of the Pirogov–Sinai
theory (10) is that for p=pc, where both phases v and o are stable, one has

ev − 2 C
C … Kv
C ¦ x

FT
v (C)

|C 5 B(Zd)|
=eo − 2 C

C … Ko
C ¦ x

FT
o (C)

|C 5 B(Zd)|
. (5.2)

For a ¥ {o, v}, let Ka
L, M(I) … Ka be the set of all a-contours contained

in U1(LL, M) 5 Rd
a(I) and let qa: exp(Ka) W {0, 1}, be the function defined

by qa(C)=1 if there are two bonds b, bŒ in the same hypercube of Zd, b is
in Ba(LL, M, I0) and bŒ is in Ba(Zd, I0)0Ba(LL, M, I0), such that C intersects
both b and bŒ. Otherwise qa(C)=0.

In the following lemma we rewrite the partition function as a sum over
interfaces and, using f to denote the common value (5.2), we extract the
normalisation factor that does not depend on a particular interface I.

Lemma 5.1.

Zt

BL, M
=NL, M C

I ¥ IL, M

ZL, M(I), (5.3)

where

ZL, M(I)=
rL, M(I)
rL, M(I0)

exp 3 − C
a=o, v

C
C … Ka

C 5 I ] ”

FT
a (C) 5|C 5 Ba(LL, M, I)|

|C 5 B(Zd)|

− qa(C)
|C 5 B(LL, M)|

|C 5 B(Zd)|
64 (5.4)

and NL, M is the normalisation factor

NL, M=rL, M(I0) q1 − |“B
v(LL, M, I0)|/2d(1 − p)−|“B

v(LL, M, I0)|

× exp 3 − f |B(L)| − C
a=o, v

C
C … Ka

qa(C)=1

FT
a (C)

|C 5 B(L)|
|C 5 B(Zd)|

4 . (5.5)
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Proof. Applying the methods similar to proof of the Lemma 3.1 we
first rewrite the random-cluster partition function using contours. We have
to take in account that, for any g equal to t outside BL, M, we have

kBL, M
(g)=1+|“(g) 5 Kv |+EL(g) (5.6)

and

2d |LL, M 5 V(B(g))|=2 |B(g) 5 B0(LL, M)|+2 |“2g 5 B0(LL, M)|

+|B(g) 5 “Bo
0(LL, M, I0)|+|“1g 5 B0(LL, M)|

+|“1g 5 “Bv
0(LL, M, I0)|+|“2g 5 “Bo

0(LL, M, I0)|.

For any “ from DL, M(I) we have

||I||L, M+ C
c ¥ “

||c||=2 |“2g(“, I) 5 B0(LL, M)|+|“1g(“, I) 5 B0(LL, M)|

+|“1g(“, I) 5 “Bv
0(LL, M, I0)|+|“2g(“, I) 5 “Bo

0(LL, M, I0)|

+|“Bo(LL, M, I0)0B(g(“, I))|. (5.7)

After a straightforward computation, we get

Zt
BL, M

=q1 − |“B
v(LL, M, I0)|/2d(1 − p)−|“B

v(LL, M, I0)|

× C
I ¥ IL, M

rL, M(I) C
“ ¥ DL, M(I)

e−eo |B(LL, M) 5 B(g(“, I))|

× e−ev |B(LL, M)0B(g(“, I))| D
c ¥ “

r(c). (5.8)

Now, we apply the iteration procedure used in the proof of Lemma 3.2
separately for upper and lower part of BL, M. One has to observe, that all
external contours above (resp. below) the interface are o-contours (resp.
v-contours). As a result, we get

Zt
L, M= C

I ¥ IL, M

q1 − |“B
v(LL, M, I0)|/2d(1 − p)−|“B

v(LL, M, I0)|

× e−eo |Bo(LL, M, I)|e−ev |Bv(LL, M, I)|

× rL, M(I) Z(Ko
L, M(I), Fo) Z(Kv

L, M(I), Fv). (5.9)
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The required result follows then by substituting

exp 5p(Fa) |Ba(LL, M, I)| − C
C … Ka

C 5 B
a(LL, M, I)c

] ”

FT
a (C)

|C 5 Ba(LL, M, I)|
|C 5 B(Zd)|

6

(5.10)

for Z(Ka
L, M(I), Fa) according to (3.19) and (5.1) (see also Theorem 2.2)

and taking into account that f=ev − p(Fv)=eo − p(Fo). L

6. WALLS

In the preceding section we introduced interfaces in the box LL, M. An
obvious generalisation of the notion of an interface is to consider any con-
figuration g ¥ W with a single infinite component I of the boundary of
U1/4(F(g)) such that the set I0I0 has only finite components. We write I

for the set of all interfaces in this sense and use IL to denote the set of
all interfaces differing from I0 in the 1-neighbourhood of a cylinder
LL=LL, .=([ − L, L] 5 Z)d − 1 × Z.

Every interface I ¥ I can be characterised by specifying its irregulari-
ties with respect to I0. We will call these irregularities walls. The precise
definition follows. First, we introduce vertical shifts Th: Rd

W Rd, (x1,..., xd)
W (x1,..., xd+h). For any set D … Rd we define the cylinder C(D)=
1h ¥ R Th(D) and the ‘‘projection’’ of D on I0, p(D)=C(D) 5 I0, p−1(p(D))
=C(D). Every interface can be divided into two disjoint subsets I=
G(I) 2 B(I), its good and bad part:

G(I)={x ¥ I : C(x) 5 I=x}; B(I)=I0G(I). (6.1)

Connected components of the closed set U1/2(B(I)) 5 I are called the walls
of I.

On the other hand, a set w … Rd is called a wall, if there exists a box
LL, M and an interface I ¥ IL, M such that w is a wall of I. Moreover, a wall
w is called a standard wall, if there exists an interface I such that w is the
only wall of I. Let W be the set of all standard walls. We say, that two
walls w1 and w2 are compatible, if the intersection of their projections
p(w1), p(w2) is empty. We use E to denote the set of all compatible families
of standard walls.

For any standard wall w we define Ext w as the only infinite compo-
nent of I0 0p(w) and Int w=I0 0(p(w) 2 Ext w). We say that a wall w is
inside of a wall w̄, if p(w) … Int w̄. A compatible collection W of walls is
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called admissible, if every wall from W is inside of finitely many walls
from W. Let Ea be the set of all admissible collections of walls.

The following obvious geometrical lemma describes the mutual rela-
tions between walls, standard walls and interfaces.

Lemma 6.1. (a) For every wall w there exits one and only one
h=h(w) such that Th(w) is a standard wall. We call the wall Th(w)(w) the
standard position of w.

(b) The mapping W( · ) that assigns to any interface I the collection
of its walls in standard positions maps I into E and is one-to-one from the
set Ia=W−1(Ea) to Ea.

Proof. See Appendix A of ref. 8. L

For every standard wall w we define its length by ||w||=|w 5 B(Zd)|
and its energy

E(w)=
log q

2d
(||w|| − ||p(w)||). (6.2)

Note, that there exists constant cw=cw(d) depending only on dimension,
such that 1 > cw > 0 and ||w|| \ (1 − cw)−1 ||p(w)||. Hence, we have

E(w) \ cw
log q

2d
||w||. (6.3)

It is now easy to rewrite the partition function ZL, M(I) in terms of
walls.

Lemma 6.2.

ZL, M(I)= D
w ¥ W(I)

exp[ − E(w)] exp 3 − C
a=o, v

C
C … Ka

C 5 I ] ”

FT
a (C)

×5|C 5 Ba(LL, M, I)|
|C 5 B(Zd)|

− qa(C)
|C 5 B(LL, M)|

|C 5 B(Zd)|
64 (6.4)

Proof. According to the definition of rL, M(I) we have

log
rL, M(I)

rL, M(I0))
=−(||I||L, M − ||I0 ||L, M)

log q
2d

. (6.5)
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However, it is easy to see from the definition of the wall that

||I||L, M=||I0 ||L, M+ C
w ¥ W(I)

(||w|| − ||p(w)||). (6.6)

Combining these facts with (6.2) and Lemma 5.1 completes the proof. L

We will now investigate the random cluster model in a cylinder LL

under the boundary condition t. We use BL to denote BL, .. Since the con-
figuration t is evidently a BL-good boundary condition, we know from
Proposition 4.1, that there is a unique limit random cluster measure

mt

BL
= lim

M Q .

mt

BL, M
. (6.7)

First, we have to verify that there exists mt

BL
-a.s. an interface. It is not a

priory clear, because we have defined that the interface has only finite
components of I0I0.

Lemma 6.3. There exists mt

BL
-a.s. an interface.

Proof. Let I (n)
L be the set {g : g=t ouside BL and I(g) …

Rd − 1 × [ − n, n]}. The assertion of the lemma is an easy consequence of the
fact

lim
n Q .

mt

BL
(I (n)

L )=1. (6.8)

To prove this we chose e > 0, and we define the events Dm, which is realised
if all vertical bonds in BL between the planes xd=m and xd=m+1 are
vacant, and Em, which is realised if all horizontal bonds in the plane xd=m
are occupied. It is easy to see

I (n)
L ‡ 1 0

0 < k [ n
D−k

2 5 1 0
0 < l [ n

El
2 . (6.9)

Since mt

BL
is FKG-dominated by percolation measure ma

BL
with parameter

1 > P \ pc, and Dk are decreasing events, we have for n large enough

mt

BL
10 D−k

2 \ ma
BL
10 D−k

2=1 − (1 − (1 − P) (2L+1)d − 1
)n \ 1 − e/2.

(6.10)
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On the other side, mt

BL
FKG-dominates the percolation measure ma

BL
with

parameter P, such that p
q(1 − p)=

P
1 − P (see ref. 6, Theorem 4.8). Since El are

increasing events, we have for n large enough

mt

BL
10 El

2 \ ma
BL
10 El

2=1 − (1 − PKLd − 1
)n \ 1 − e/2, (6.11)

where K=K(d) is a positive constant. Since e was arbitrary, (6.8) follows
from (6.9)–(6.11). L

Lemma 6.4. Let q be large enough. Then
(a) For every L ¥ N there exists a mapping KL: IL W (0, .) such

that ; I ¥ IL
KL(I) < . and ZL, M(I) [ KL(I) for every M ¥ N and I ¥ IL, M.

(b) There exists a finite limit limM Q . ZL, M(I) and it equals

ZL(I)= D
w ¥ W(I)

exp[ − E(w)] × exp 3 − C
a=o, v

C
C … Ka

C 5 I ] ”

FT
a (C) 5|C 5 Ba(LL, I)|

|C 5 B(Zd)|

− qa(C)
|C 5 B(LL)|
|C 5 B(Zd)|

64

(6.12)

(c) The probability PI
L, M on IL, M defined, for I ¥ IL, M, by

PI
L, M(I)=mt

BL, M
({g : I(g)=I})=

ZL, M(I)
; IŒ ¥ IL, M

ZL, M(IŒ)
(6.13)

converges to a probability PI
L on IL that is proportional to ZL, i.e.

PI
L (I)=

ZL(I)
; IŒ ¥ IL

ZL(IŒ)
. (6.14)

Proof. We start by bounding the absolute value of the sum in the
exponent in (6.4). We divide it into two parts. First, we take all clusters
intersecting the interface inside of U1(LL, M). To use expression (3.20), we
have to chose an appropriate finite set of points on the interface. Thus, let
us first introduce the set Zd

1/2=1
2 Zd+(1

4 ,..., 1
4). It is clear, that if a cluster

intersects the interface, their intersection has to contain at least one point
from Zd

1/2. The number of such points in U1(LL, M) is smaller than cc ||I||L, M,
where cc=cc(d) is a constant depending only on the dimension. It is easy
to see that cc(d) [ 2d+1. Using this we can bound the first part of sum by
2cc ||I||L, M.
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It remains to bound the sum over clusters intersecting the interface
only outside U1(LL, M). From (3.20) we have

C
C ¦ x

||C|| > a

|FT(C)| [ e−wa. (6.15)

Observing that the number of points in Zd
1/2 2 I0 at distance of order a

from LL, M is of the order (L+a)d − 2, it is easy to see that the second part of
the sum is convergent and can be bounded by some constant K̄L=K̄L(d).

According to the definition of E(w) and using the results of the pre-
ceding discussion, we can write

ZL, M [ e K̄L exp 3 − C
w ¥ W(I)

log q
2d

(||w|| − ||p(w)||)+2cc ||I||L, M
4

=e K̄L exp 3 − C
w ¥ W(I)

1 log q
2d

− 2cc
2 (||w|| − ||p(w)||)+2cc ||I0 ||L, M

4 .

(6.16)

Using (6.3) and taking q large enough to be sure that (2d)−1 log q − 2cc \ 0
we have:

ZL, M(I) [ e K̄L exp 3 − cw C
w ¥ W(I)

1 log q
2d

− 2cc
2 ||w||+2cc ||I0 ||L 4

— KL(I). (6.17)

The sum of KL(I) can be bounded in the following way

C
I ¥ IL

KL(I) [ exp(K̄L+2cc ||I0 ||L)

× D
x ¥ I0 5 BLL

C
w ¥ W

x ¥ w

exp 5− cw
1 log q

2d
− 2cc

2 ||w||6 . (6.18)

The number of walls that contains an arbitrary site x ¥ Rd can be bounded
in the same way as the number of such contours,

|{w : w ¦ x, ||w||=n }| [ cn. (6.19)
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Let mw be the minimal length of wall. Then

C
w ¥ W

i ¥ w

exp 5− cw ||w|| 1 log q
2d

− 2cc
26 [ C

.

n=mw

cn exp 5− ncw
1 log q

2d
− 2cc

26

[
{c exp[ − cw(log q/2d − 2cc)]}mw

1 − c exp[ − cw(log q/2d − 2cc)]
[ 1

(6.20)
if

cw
1 log q

2d
− 2cc

2 \ log(2c). (6.21)

Proof of (b) follows from the facts that |FT
a (C)| decreases exponen-

tially with the size of C and, for any finite C, we have |C 5 Ba(LL, M, I)| Q
|C 5 Ba(LL, I)| and |C 5 B(LL, M)| Q |C 5 B(LL)| as M Q .. The state-
ment (c) is a consequence of (a). L

7. PROOF OF THEOREM 2.3(I)–(III)

For every finite, compatible collection of walls W we use MW to
denote the set MW={W̄: W̄ ¥ E, W … W̄} and put ||W||=;w ¥ W ||w||.

We will prove the following lemma in the Appendix A.

Lemma 7.1. Let q large enough. Then we have

(a) There is c̄ > 0, such that

PI
L (MW) [ exp[ − c̄ ||W||] (7.1)

for any finite collection of walls W ¥ EL.

(b) The probability measures PI
L converge weakly to the measure PI

on I.

(c) The limiting measure PI satisfies PI(Ia)=1.

Using the preceding lemma we will now prove the existence of the
limiting state mt (the claim (i) of Theorem 2.3). Actually, we will prove even
more: an explicit expression for mt in terms of the limiting measure PI that
allows to verify easily the claims (ii) and (iii) of Theorem 2.3. To this end,
let us first introduce the measure m( · | I) on {0, 1}B(Z

d) defined for any
I ¥ I as follows. Let BI be the set of all bonds whose value is fixed by
existence of the interface I. Namely, BI is defined as the set of all bonds
b ¥ B(Zd) that either intersect I or lie on the boundary of U1/4(I). For any
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L … Zd (possibly L=Zd), the measures mo
L, I( · )=limB Q B

o(L, I)0BI
mg

o

B ( · ) on
{0, 1}B

o(L, I)0BI are well defined by the same argument as in (2.5). Similarly
for mv

L, I. Introducing also the Dirac measure dL, I on {0, 1}BI 5 B(L) defined
by dI(g)=1, if g(b)=0 for all b ¥ BI 5 B(L) that intersect I and g(b)=1
for all b ¥ BI 5 B(L) that lie on the boundary of U1/4(I), and dI(g)=0
otherwise, we define

mL( · | I)=mv
L, I é dL, I é mo

L, I( · ) (7.2)

and denote m( · | I)=mZ
d( · | I) and mL( · | I)=mLL

( · | I).
Let f be a cylindrical function living on the BL0, M0

. For finite volume
LL, M, L \ L0, M \ M0, we clearly have

mt

BL, M
(f)=F mLL, M

(f | I) dPI
L, M(I) (7.3)

(cf. (6.13)). Recalling that with respect to the limit mt

BL
an interface exists

a.s., observing that

lim
M Q .

mLL, M
(f | I)=mL(f | I), (7.4)

and using (6.8), we also have

mt

BL
(f)=F mL(f | I) dPI

L (I). (7.5)

Next, we will show that

lim
L Q .

F mL(f | I) dPI
L (I)=F m(f | I) dPI(I), (7.6)

yielding thus the existence of the limiting mt as well as the expression

mt(f)=F m(f | I) dPI(I). (7.7)

Using the convergence limL Q . mL(f | I)=m(f | I), i.e.

F |mL(f | I) − m(f | I)| dPI
L (I) [

e

2
(7.8)

for L large, for proving

:F mL(f | I) dPI
L (I) − F m(f | I) dPI(I) : [ e, (7.9)

Interfaces for Random Cluster Models 91



it suffices to show that

: F m(f | I) dPI
L (I) − F m(f | I) dPI(I) : [ e

2
(7.10)

for large L. Let us introduce the function

fk(I)=qk
L0

(I) m(f | I) (7.11)

for every k ¥ N 2 ., where q
k
L0

(I)=1, if for every wall from W(I) that
intersects p−1(BL0, M0

) holds ||w|| [ k, and qk
L0

(I)=0 otherwise. Using
Lemma 7.1 (a) it is easy to see, that the limit

lim
k Q .

F fk(I) dPI
L (I) (7.12)

exists and is equal to

F f.(I) dPI
L (I)=F mL(f | I) dPI

L (I) (7.13)

for every L large enough.
For any sequence of interfaces In ¥ Ia converging to I ¥ I (in the

sense that the distance between the symmetrical difference IgIn and the
origin goes to infinity) we have fk(In) Q fk(I). It is an easy consequence of
the fact that qk

L0
(I) has finite support and of the limiting properties of

m(f | I) again. Hence, fk is continuous and according to the weak conver-
gence of PI

U demonstrated in Lemma 7.1 we have

: F fk(I) dPI
L (I) − F fk(I) dPI(I): [ e

2
. (7.14)

The existence of limit random-cluster measure comes from
(7.8)–(7.14).

The assertion (ii) and (iii) of Theorem 2.3 are consequences of exis-
tence of interface and the properties of m(f | I). L

8. PROOF OF THEOREM 2.3(IV)

We use the approach from refs. 6, 7, and 14 to prove that mt is a
Gibbs random cluster measure. First we state that the specifications mt

B are
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‘‘almost surely quasilocal’’ in the language of ref. 13. For finite sets L, D

with L … D … Zd, let MD, L be the event

MD, L={g | -x, y ¥ L x Y Dc and y Y Dc implies x Y y in B0(D)} (8.1)

Lemma 8.1. (i) Let B … B(Zd) be a finite set, and let f be a
cylinder function depending only on the bonds from B. Then function

g W 1MD, L
(g) mg

B (8.2)

is quasilocal for any pair of finite sets D, L with D ‡ L … V(B).

(ii) Let m is a random cluster limit measure with at most one infinite
cluster and L … Zd finite. Then

m(MD, L) q 1 as D q Zd. (8.3)

Proof. (i) Recalling the definition (2.1) of mg
B, it is sufficient to

prove that the function g W 1MD, L
qkB(ḡB p gBc) is quasilocal for all ḡ. Let

D̃ ‡ D, and let g, gŒ be two configurations differing at single bond
b ¥ B(D̃)c, gb=0, g −

b=1. Suppose that g ¥ MD, L. By definition of MD, L,
there is only one cluster that connects L with Dc, that is why changing the
state of the bond b does not affect the number kB(ḡB p gB

c). This proves
quasilocality of g W 1MD, L

(g) mg
B as required.

(ii) Since MD, L qML, where ML is the event that there is at most one
infinite component intersecting L, we have that m(MD, L) q m(ML)=1, by
the assumption of that there is m-a.s. at most one infinite cluster. L

We proceed with the proof of part (iv) of Theorem 2.3. Let B be a
finite set of bonds, and let f be bounded function depending only on the
bonds from B. Since both f and 1MD, V(B)

( · ) m
.
B(f ) are quasilocal for all

D ‡ V(B), we have

mt(1MD, V(B)
( · ) m

.
B(f ))= lim

L, M Q .

mt

BL, M
(1MD, V(B)

( · ) m
.
B(f )) (8.4)

and

mt(f )= lim
L, M Q .

mt

BL, M
(f )= lim

L, M Q .

mt

BL, M
(m

.
B(f )). (8.5)

In the last equality we have used the DLR condition for the finite volume
measure mt

BL, M
, that is not difficult to check.
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Let e > 0. By part (ii) of Theorem 2.3 there is mt-a.s a unique infinite
cluster, so we can use part (ii) of Lemma 8.1. Considering the boundedness
of m

.
B(f ), we can choose D1, D2 and L0, M0, such that

|mt(m
.
B(f )) − mt(1MD, V(B)

( · ) m
.
B(f ))| [

e

3
(8.6)

and

|mt

BL, M
(m

.
B(f )) − mt

BL, M
(1MD, V(B)

( · ) m
.
B(f ))| [

e

3
(8.7)

provided D1 … D … D2 and L \ L0, M \ M0. Combining (8.4)–(8.7), we get

|mt(f ) − mt(m
.
B(f ))| [ e (8.8)

Since e was arbitrary, we have mt(f )=mt(m
.
B(f )). L

APPENDIX A: PROOF OF LEMMA 7.1

In this appendix we prove Lemma 7.1 using the method from ref. 8.

A.1. Aggregates

The aim of this part is to rewrite the formula (6.12) for ZL(I) in terms
of abstract polymer model. The proper definition of polymers of this model
is not very easy and it appears naturally during the rewriting. That is why
we start by simplifying the formula (6.12) and at the end of this section we
state the result as a lemma.

We introduce an additional notation to simplify the expressions.
Namely, we define the sets Ca={C … Ka : C cannot be decomposed into
two subsets C1 and C2 such that every c1 ¥ C1 is compatible with every
c2 ¥ C2}. We define the set Ca

L similarly, the only difference is that
C … Ka(LL). The standard result of the theory of cluster expansions is that
YT

a (C)=0 for all C ¨ Ca. Thus, we can replace the sums over all subsets of
Ka by sums over Ca.

We use the following observation, valid for any countable set N and
any absolutely summable sequence an,

exp 1 C
n ¥ N

an
2= D

n ¥ N
[(exp an − 1)+1]= C

K … N
finite

D
n ¥ K

(exp an − 1). (A.1)
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The assumption about absolute summability holds true for the expression
in (6.12), because

C
a

C
C ¥ C

a

C 5 I ] ”

:FT
a (C) 5|C 5 Ba(LL, I)|

|C 5 B(Zd)|
− qa(C)

|C 5 B(LL)|
|C 5 B(Zd)|

6: [ 2cc ||I||L+K̄,
(A.2)

as we have shown in the proof of Lemma 6.4. Defining

fa
L, I(C)=exp 3 − FT

a (C)5|C 5 Ba(LL, I)|
|C 5 B(Zd)|

− qa(C)
|C 5 B(LL)|
|C 5 B(Zd)|

64− 1,
(A.3)

for every C ¥ Ca, we get

ZL(I)= D
w ¥ W(I)

e−E(w) C
To, Tv

D
a

D
C ¥ Ta

fa
L, I(C). (A.4)

Here the sum runs over all finite sets Ta … Ca, such that every element of Ta

intersects I.
We now decompose the union of sets W(I), To and Tv into disjoint

components A=(aw, ao, av), where aw … W(I), aa … Ta, such that

p(A)=p 1 0
w ¥ aw

w 2 0
C ¥ ad

C 2 0
C ¥ ao

C2 (A.5)

is a maximal connected component of p(W(I) 2 To 2 Tv). We call such A
an aggregate of I, To and Tv. On the other side, the triplet (aw, ao, av) is an
aggregate if it is an aggregate of any I, To and Tv. We say that A is a stan-
dard aggregate if there is an interface I such that aw=W(I). Similarly as
for walls, it is possible to prove that for every aggregate A there is one and
only one h=h(A) such that the shift Th(A)(A) is a standard aggregate. We
use AL to denote the set of all aggregates of interfaces from IL and
A=1L AL. Note, that A ¥ AL does not mean that A … U1(LL). We say
that two standard aggregates are compatible if their projections on I0 have
an empty intersection, FL denotes the set of all compatible collections
of aggregates from AL. For every R ¥ FL we define a mapping W(R)=
1A ¥ R aw. We use ||A|| to denote the ‘‘length’’ of the aggregate A,

||A||= C
w ¥ aw

||w||+ C
C ¥ ad 2 ao

||C|| (A.6)

and ||p(A)||=|B(Zd) 2 p(A)| to denote the ‘‘length’’ of its projection.
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For every aggregate we introduce the aggregate functional

YL(A)= D
w ¥ aw

e−E(w) D
a

D
C ¥ aa

fa
L, I(aw)(C). (A.7)

Since the value of fa
L, I(C) depends only on the walls that are in the same

aggregate as C, and since FT
a (C) is translation invariant we can rewrite

(A.4) as

ZL(I)= C
R ¥ FL

W(R)=W(I)

D
A ¥ R

Y(A). (A.8)

Combining this fact with Lemma 6.4 one easily gets

Lemma A.1. Let q be large enough. Then

ZL := C
I ¥ IL

ZL(I)=Z(AL, YL) (A.9)

and

PI
L (I)=(Z(AL, YL))−1 C

S ¥ FL
W(S)=W(I)

D
A ¥ S

YL(A). (A.10)

At this place, is useful to observe that although we have defined fa
L, I

and YL only for finite L, their definitions are meaningful also for L=..
We will write fa

I for fa
., I and Y for Y..

A.2. Properties of Aggregate Contour Model

In Lemma A.1 we express the normalised partition function ZL in
terms of a polymer model. To be able to apply the cluster expansion to this
model, we have to verify the assumptions of Theorem B.1. This will be
done in Lemma A.3. Before stating it, we will prove one auxiliary lemma.

Lemma A.2. Let q be large enough. Then for any L ¥ N 2 .,
I ¥ IL, and any x ¥ Rd,

C
C ¥ C

a

x ¥ C

|fa
L, I(C)| exp(w ||C||) [ 1/2, (A.11)
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whenever

w [
1

2d
log q − w0 − m−1

a (2+2 log 2). (A.12)

Proof. According to (3.20) and Theorem B.2 we have

C
C ¥ C

a

C ¦ x

|FT
a (C)| e w̃ ||C|| [ 1 (A.13)

with

w̃=
1

2d
log q − w0. (A.14)

Using the fact that |eu − 1| [ ev |u| if |u| [ v and that |C 5 B(Zd)| \ ma for
every cluster from Ca, we have

C
C ¥ C

a

C ¦ x

|fa
L, I(C)| exp(w ||C||)

= C
C ¥ C

a

C ¦ x

:exp 3 − FT
a (C) 5|C 5 Ba(LL, I)|

|C 5 B(Zd)|
− qa(C)

|C 5 B(LL)|
|C 5 B(Zd)|

64− 1:

× exp(w ||C||)

[ C
C ¥ C

a

C ¦ x

2e2 |FT
a (C)| exp(w ||C||)

[ 2e2 exp[(w − w̃) ma] [ 1/2. L (A.15)

Lemma A.3. Let q be large enough. Then

C
A ¥ AL
p(A) ¦ x

exp(||p(A)||+w ||A||) YL(A) [ 1, (A.16)

for any x ¥ I0, whenever

w [ − z+
cw

2d
log q − w0 − max

a
m−1

a (2+log 2) (A.17)

and

z=1+log(3c)+cc log 4+log cd − 1. (A.18)
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Proof. We use Q to denote the set of all projections of aggregates,
i.e., the set of all Q … I0, such that there exists an aggregate A for which
p(A)=Q. For every Q ¥ Q and every aw ¥ E, such that p(aw) … Q, we
define the set F(aw, Q)={(ao, av) : A=(aw, ao, av) ¥ A and p(A)=Q}.
Using these definitions and the relation (6.3), we get

C
A ¥ AL
p(A) ¦ x

exp(||p(A)||+w ||A||) YL(A)

[ C
Q ¥ Q

Q ¦ x

(exp ||Q||) C
A ¥ AL

p(A)=Q

exp(w ||A||) D
w ¥ aw

exp{ − E(w)}

× D
a

D
C ¥ aa

fa
L, I(aw)(C)

[ C
Q ¥ Q

Q ¦ x

(exp ||Q||) C
p(aw) … Q

aw ¥ EL

exp 51w − cw
log q

2d
2 ||aw ||6

× C
(ao, av) ¥ F(aw, Q)

D
a

D
C ¥ aa

|exp(w ||C||) fa
L, I(aw)(C)|=(1). (A.19)

Since ||A|| \ ||I(aw) 5 p−1(Q)|| — ||I(aw, Q)||, we have

(1) [ C
Q ¥ Q

Q ¦ x

(exp ||Q||) C
aw ¥ EL

p(aw) … Q

exp 51w − cw
log q

2d
+z2 ||aw || − z ||I(aw, Q)||6

× C
(ao, av) ¥ F(aw, Q)

D
a

D
C ¥ aa

|exp[(w+z) ||C||] fa
I(aw)(C)|=(2). (A.20)

Using the previous lemma, the fact w − (2d)−1 cw log q+z [ 0, and the
relation between the number of points in I(aw, Q) 5 Zd

1/2 and ||I(aw, Q)|| as
in the proof of Lemma 6.4, we have

(2) [ C
Q ¥ Q

Q ¦ x

(exp ||Q||) C
aw ¥ EL

p(aw) … Q

exp[ − z ||I(aw, Q)||]

× D
a

D
j ¥ I(aw, Q)

j ¥ Z
d
1/2

C
.

k=0

1 C
C ¥ Ca

C ¦ j

{exp[(w+z) ||C||]} |fa
L, I(aw)(C)|2

k

[ C
Q ¥ Q

Q ¦ x

(exp ||Q||) C
aw ¥ EL

p(aw) … Q

exp[ − (z − cc log 4) ||I(aw, Q)||]=(3). (A.21)
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The number of interfaces with ||I 5 p−1(Q)||=n, such that p(W(I)) … Q,
can be bounded by cn and the minimal length of such interface is ||Q||.
Hence,

(3) [ C
Q ¥ Q

Q ¦ x

(exp ||Q||) C
.

n=||Q||
exp[ − (z − cc log 4) n] cn

= C
Q ¥ Q

Q ¦ x

(exp ||Q||)
exp[(cc log 4 − z+log c) ||Q||]
1 − exp[cc log(4) − z+log c]

[ 2 C
Q ¥ Q

Q ¦ x

exp[(1+cc log 4 − z+log c) ||Q||]=(4). (A.22)

To bound the last expression, we will use the estimate

|{Q ¥ Q : Q ¦ x, ||Q||=n}| [ cn
d − 1. (A.23)

And thus

(4) [ 2 C
.

n=1
cn

d − 1 exp[(1+cc log 4 − z+log c) n] [ 1, (A.24)

which is easy to see from (A.17) and (A.18). L

Proving the previous lemma, we have verified the assumptions of
Theorem B.2 for the contour model with contour functional YL. The
bounds we found do not depend on the size of box. Thus, we can work
with this contour model also in the case L=..

A.3. Proof of Lemma 7.1

Proof of (b). We want to prove that the probability measures PI
L

converge weakly to the probability measure PI on I. According to Lemma
6.1, the probability measures PI

L can be thought of as the measures on the
set EL. Let us observe that the set of all subsets of W may be identified
with the compact metric space {0, 1}W. Endowing it with its Borel
s-algebra, the sets E and Ea may be considered as measurable subspaces of
the space of subsets of the set of all standard walls. That is why PI is
uniquely determined by its values on the sets of the form

MM, W={W̄ ¥ E : W̄ 5 M=W} (A.25)
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for all finite sets W ¥ E and M … W. Since

MM, W=MW
< 0

w ¥ M0W

MW 2 {w}, (A.26)

one has for any probability P on E the equality

P(MM, W)=P(MW) − P 1 0
w ¥ M0W

MW 2 {w}
2 (A.27)

=P(MW) − C
WŒ … M0W

WŒ ] ”

(−1) |WŒ|+1 P(MW 2 WŒ) (A.28)

= C
WŒ … M0W

(−1) |WŒ| P(MW 2 WŒ). (A.29)

Thus, to verify the convergence of PI
L we must only verify the con-

vergence of PI
L (MW). We first define the set FL(W) as

FL(W)={S ¥ FL : W(S) ‡ W, A ¥ S S W(A) 2 W ] ”}. (A.30)

One can observe that

PI
L (MW)= C

S ¥ FL(W)
D

A ¥ S
YL(A)

Z(AL 0[[S]], YL)
Z(AL, YL)

, (A.31)

where we use [[S]] to denote the set of aggregates not compatible with S.
Further, we use the cluster expansions for the nominator and denominator
in the last formula. After the standard computation we get

PI
L (MW)= C

S ¥ FL(W)
exp 1− C

C ¥ A
cl
L

CiS

YT
L(C)2 D

A ¥ S
YL(A), (A.32)

where we use CiS to denote the fact that p(C) 5 p(S) ] ”, i.e., C is
incompatible with S. Let e > 0. We will show that for L large enough the
difference between the last expression and

C
S ¥ F(W)

exp 1− C
C ¥ A

cl

CiS

YT(C)2 D
A ¥ S

Y(A) (A.33)

is smaller then e. First, we prove that the contribution of terms with large S
is negligible for both sums. In the following computation we use Lemma
A.3 and bound (B.4) applied to aggregate model.
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C
S ¥ F· (W)

||S|| \ K, ||p(S)|| \ KŒ

exp 1− C
C ¥ A

cl
·

CiS

YT
· (C)2 D

A ¥ S
Y.(A)

[ C e ||S|| D
A ¥ S

Y.(A)=C D
A ¥ S

e ||A||Y.(A)

[ e (1 − w) K − KŒ D
x ¥ W

11+ C
A ¦ x

Y.(A) ew ||A||+||p(A)||2

[ e (1 − w) K − KŒ2cc ||W|| [ e/4, (A.34)

if we chose the constants K or KŒ large, and if q is large enough to allow us
to take w > 1.

Let us denote by d(W) the minimal L such that W … U1(LL). From
now, we consider only L such that L \ d(W)+max(K, KŒ). One can
observe that

C
S ¥ FL(W)

||S|| [ K, ||p(S)|| [ KŒ

f(S)= C
S ¥ F(W)

||S|| [ K, ||p(S)|| [ KŒ

f(S) (A.35)

for arbitrary function f. Denoting the sum in last expression by ; s, we
have to prove that

:C
s

exp 1− C
C ¥ A

cl
L

CiS

YT
L(C)2 D

A ¥ S
YL(A)

− C
s

exp 1− C
C ¥ A

cl

CiS

YT(C)2 D
A ¥ S

Y(A) : [ e/2. (A.36)

We start by showing that skipping the dependence on L in the exponential
of first term produces only negligible error if L is large.

:exp 1− C
C ¥ A

cl
L

CiS

YT
L(C)2− exp 1− C

C ¥ A
cl

CiS

YT(C)2 :

[ e ||S|| : C
C ¥ A

cl
L

CiS

YT
L(C) − C

C ¥ A
cl

CiS

YT
L(C)+ C

C ¥ A
cl

CiS

YT
L(C) − C

C ¥ A
cl

CiS

YT(C) : ,
(A.37)

where we used the fact that |ex − ey| [ emax(x, y) |x − y|.
The first two sums differ only on the clusters not in Acl

L . That means
that size of C is at least L − d(V). From this we can see that the difference

Interfaces for Random Cluster Models 101



between first two terms is of order e−wL. The second two terms are also
very close. Actually, YT

L(C)=YT(C) for C living in the cylinder of size L.
The rest can be bounded in the same way as the difference of first two
terms. Since the sum ; s has only finite number of terms, we have, for L
large enough,

:C
s

exp 1− C
C ¥ A

cl
L

CiS

YT
L(C)2 D

A ¥ S
YL(A)

− C
s

exp 1− C
C ¥ A

cl

CiS

YT(C)2 D
A ¥ S

YL(A) : [ e/4. (A.38)

It remains to prove that

:C
s

D
A ¥ S

YL(A) exp 1− C
C ¥ A

cl

CiS

YT(C)2− C
s

D
A ¥ S

Y(A) exp 1− C
C ¥ A

cl

CiS

YT(C)2 :

(A.39)

can be made arbitrary small. However, we have

C
s

exp 1− C
C 2 S ] ”

YT(C)2 1 D
A ¥ S

YL(A) − D
A ¥ S

Y(A)2=0 (A.40)

for L larger than d(W)+max(K, KŒ) by definition of YL(A).

Proof of (a). To prove the claim (a) one uses essentially the same
computation as in (A.34). The value of q has to be taken large enough to
have c̄=w − 1 − cclog 2 > 0. Note, that c̄ can be made arbitrary large, if q
increases.

Proof of (c). It is simple to notice that PI(EL)=1, since the set
W0E is covered by a countable union of sets of collections of walls that
are ‘‘incompatible at some x ¥ Zd

1/2.’’
To verify that PI(Ea)=1 we use the standard argument. First, we

consider the half-line p from a fixed x ¥ I0, x ¥ Zd
1/2 parallel to a fixed

coordinate axis in Zd such that p … I0 and the wall w such that x ¥ Int p(w)
and ||w||=n. There is at most 2n points in p 5 Zd

1/2 that can be inside of
p(w), and thus

PI({ W | x ¥ Int p(w), ||w||=n, w ¥ W })

[ 2nPI({ W | x ¥ p(w), ||w||=n, w ¥ V }). (A.41)
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Hence, the probability that a site x is inside at least n walls may be
bounded by

C
.

m=n
PI({ W : x ¥ Int p(w), ||w||=m, w ¥ W })

[ C
.

m=n
2m C

w : p(w) ¦ x
||w||=m

PI
L ({w})

[ C
.

m=n
2mcm

d − 1 exp[ − c̄m] [ C
.

m=n
2mcm

d − 1 exp[ − c̄m]

=
exp[ − (c̄ − log 2cd − 1) n]

1 − exp[ − (c̄ − log 2cd − 1)]
, (A.42)

since the length of the nth wall ‘‘encircling’’ i is at least n. Then the proba-
bility that the site i is ‘‘encircled’’ by an infinite number of walls is bounded
by

lim
n Q .

exp[ − (c̄ − log 2cd − 1) n]
1 − exp[ − (c̄ − log 2cd − 1)]

=0, (A.43)

if c̄ > log 2cd − 1. From this we see that PI(Ea)=1. L

APPENDIX B: POLYMER MODELS

We will summarize here the standard facts about contour (polymer)
models and cluster expansion. Throughout the whole Appendix A we
follow the article. (14)

We will consider a countable set K of polymers. Let i be a reflexive
and symmetric relation. We call a pair c1, c2 incompatible (compatible) if
and only if (c1, c2) ¥ i ((c1, c2) ¨ i). We use the notation c1ic2 for incom-
patible polymers. By D, Df we denote the set of all ( finite) collections
“ … K of mutually compatible polymers. Considering a contour functional
F: KW C, we use F(“)=<c ¥ “ F(c) for each “ ¥ Df

For any finite L … K we introduce the partition function

Z(L, F)= C
“ ¥ D(L)

F(“), (B.1)

where D(L)={“ ¥ D | “ … L}.
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For any C … K we write ciC if there is c̄ ¥ C such that cic̄. We call C
cluster if it is not decomposable into two nonempty sets, C=C1 2 C2, such
that every pair c1 ¥ C1, c2 ¥ C2 is compatible. The set of all clusters will be
denoted by C.

Theorem B.1. Let functions a: KW [0, .), l: KW [0, .),
F: KW C, and a number w \ 0 be such that

C
c̄ : c̄ic

ea(c̄)+wl(c̄) |F(c̄)| [ a(c) (B.2)

for each c ¥ K. Then Z(L, F) ] 0 for every finite L … K and there exists
a unique function FT: DW C such that

log Z(L, F)= C
C … L

FT(C) (B.3)

for each finite L … K. Moreover, the estimate

C
Cic

|FT(C)| ewl(C) [ a(c) (B.4)

holds for each c ¥ K with l(C) [ ; c ¥ C l(c) and we have FT(C)=0 when-
ever C ¨ C.

For proof see ref. 8 or ref. 14 and their references.
The last theorem is used to control the behaviour of the aggregate

contour model. To simplify our work with contour models that are
obtained in Lemma 3.2, we state another theorem, that can be partly
proven using the previous one. Actually, it is a simple modification of
Theorem B.2 from ref. 8 different numerical factors in formulas come from
a more complicated geometry of contours, more precisely from the fact,
that contours do not live on a hyper-cubic lattice.

Theorem B.2. Let |Fa(c)| [ e−y ||c|| for each c ¥ K with y \ 1+
log(3c). Then the statement of Theorem B.1 is fulfilled with the estimate
(B.4) replaced by

C
C ¥ Cq
C ¦ i

|FT
a (C)| ew ||C|| [ 1 (B.5)

whenever w [ y − [1+log(3c)+m−1
a log ma].
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Assuming further that F is translation invariant, one has

log Z(Ka(L), Fa)=p(Fa) |B(L)| − C
C ¥ Ca

C 5 (B(L))c
] ”

FT
a (C)

|C 5 B(L)|
|C 5 B(Zd)|

(B.6)

for each finite L … Zd, with

p(Fa)=2 C
C ¥ Ca

C ¦ i

FT
a (C)

|C 5 B(Zd)|
(B.7)

and

|logZ(Ka(L), Fa) − p(Fa)| |BL | [ [exp(−wma)] |“BL |. (B.8)
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